> M.ENG PROJECT, APRIL 2020 <

Determining the Speed of Vehicles from Video
Images using Machine Learning

Francis Gurr
Supervised by Stefano Giani

Abstract—This report focuses on the use of road-side video
cameras as a non-intrusive alternative to current intelligent
transportation systems. The use of video to determine the
speed of vehicles traveling on major roads was investigated.
The report covers the tasks of object detection, tracking and
camera calibration. A neural network, YOLOv3, was used for
the purpose of object detection with an accuracy of 98% mAP.
A simple Kalman filter was used to track the vehicles across the
video frame, which worked well but struggled with longer periods
of occlusion. The camera was calibrated using road markings in
place of a reference object. The calibration method proved to be
accurate, however, a constant error was introduced if the road
markings were not consistent with the government specifications.
The average vehicle speeds calculated were within the expected
range and the model was able to run at real-time speeds.

I. INTRODUCTION

T has long been recognised that access to data can help

improve a product or service. This extends to the transport
industry. The Transport Data Initiative (TDI) was founded
in 2016 and believes that ‘improving the way we collect,
store, and use data will help us deliver improved transport
services while reducing the costs of delivery’ [1]. Transport
data can inform urban planning decisions and strategies and
lead the way for smart cities and motorways. Additionally,
road transport accounts for 22% of total UK emissions of
carbon dioxide, and noise from road traffic affects 30% of
people in the UK [2]. Intelligent transportation systems (ITS)
can be used to help create and track initiatives that aim to
solve such issues.

The most common form of ITS for vehicle detection uses
inductive loops to detect axles in order to classify vehicles.
These solutions are popular as they are highly accurate,
however, a major disadvantage is that they are intrusive;
they require the road to be closed during installation and
maintenance [3]. This is costly and endangers workers lives.
Therefore, there is a push to develop cheaper, non-intrusive
solutions that can be deployed out-of-road.

Road-side video cameras could provide such an alternative.
These are already used for the purposes of surveillance and,
when combined with other sensing technologies, to enforce
speed restrictions. Compared to induction loops, cameras
would perform with less accuracy, as differing weather and
lighting conditions add to the complexity of the system.
However, they benefit from vastly lower installation and
maintenance costs. This project was supported by Q-Free,
who are developing a vehicle classification system using video
images. This project investigated the use of video cameras

to determine the speed of detected vehicles. This could add
another unique product to the ITS market, providing clients
with the flexibility to choose the data they require.

A. Object detection

The first step is to detect the vehicles in the video.
Today, almost all state-of-the-art object detectors make use of
neural networks. Before these methods were computationally
feasible, background subtraction algorithms were commonly
used. All background subtraction algorithms detect foreground
objects in an image by comparing the image to a background
model.

Neural networks are a set of algorithms that are loosely
analogous to the structure of the human brain. The networks
consist of layers of artificial neurons called perceptrons. These
nodes combine a set of inputs with corresponding weights and
apply an activation function in order to produce an output. The
activation function controls whether the neuron is activated
or dead. That is, whether or not the signal can pass through
the node. Deep learning algorithms are then used to tune the
weights to control which neurons should be activated so that
the desired outputs are produced.

A convolutional neural network (CNN) is a type of
neural network that is inspired by the visual cortex and is
often applied to image tasks. A CNN consists of several
convolutional layers that are used to extract features from an
image. These features are then passed to a classifier.

The main drawback of CNNs is that they are
computationally expensive. Therefore, using them with the
sliding window approach for object detection is impractical
due to the enormous number of window regions.

Faster R-CNN [4] provides a solution using a Region
Proposal Network (RPN). The RPN generates a limited
number of regions of interest to be evaluated by the CNN.
This reduces the computational cost, significantly improving
the performance.

You Only Look Once (YOLO) [5] offers further
improvements in speed by removing the process of finding
separate region proposals. Instead, it uses a single CNN
on the entire input image only once, compared to around
2000 times for each region proposal in Faster R-CNN.
Initially, YOLO suffered from a loss in accuracy, however,
multiple improvements have led to YOLOv3 [6] which has
a competetive accuracy without significant loss of speed.
The industrial application of this project requires real-time
performance, therefore, YOLOv3 was used for the task of
object detection for this project.

> M.ENG PROJECT, APRIL 2020 <

B. Tracking

To determine the speed of a detected object its position
must be tracked so that its location between frames can be
compared.

Optical flow [7] is defined as the apparent motion of
individual pixels on the image plane and can be used to track
objects. The mathematics of optical flow can become rather
difficult, and as individual pixels are being examined, the
method is inefficient.

A common method used for tracking is the Kalman filter
[8] as it is simple and effective. It is a recursive algorithm
that is used to estimate the state of a process using a form of
feedback control. There are also numerous other methods that
build upon the Kalman filter, improving its performance.

The SORT algorithm proposed by Alex Bewley et al. [9]
combines the Kalman Filter with the Hungarian algorithm
[10] to produce a method that focuses on reliability. Both the
basic Kalman filter and the SORT algorithm lack appearance
information, therefore making them susceptible to identity
switches, especially after longer periods of occlusion. The
Deep SORT algorithm [11] tackles this problem by integrating
appearance information from the output of the CNN, with only
a minimal reduction in speed.

For this project, a basic Kalman filter was used due to its
simplicity.

C. Camera Calibration

To be able to calculate the speed in real world units the
camera must first be calibrated. Complete camera calibration
consists of distortion correction and camera resectioning;
mapping the 2D image plane to the 3D world scene. In
this project only camera resectioning was considered and any
distortion effects were assumed to be negligible.

There are many camera calibration methods due to the
number of possible combinations of known and unknown
camera parameters. However, despite this variation, many
popular solutions can be categorised into two main approaches.
In the first approach, some parameters are found from the
camera specifications and by accurately measuring the camera
set-up to find its tilt, pan, swing and translation. This has
its drawbacks as performing accurate measurements can often
be difficult or impractical, especially if the camera is in an
inaccessible location. The second approach aims to derive the
parameters using a reference object of known size or known
geometric features in the camera scene.

One commonly used method involves the use of a
chessboard pattern for calibration [12]. The exact, regular
pattern enables the camera to be reliably calibrated to
remove both radial distortion and find the camera parameters.
However, this method is only practical for small-scale scenes,
as the pattern must fill a substantial area of the image.
Therefore, to calibrate a road-side camera, the chessboard
would have to be impractically large.

Other methods use a stereo camera system where two
cameras are used to observe the same scene from different
positions [13]. This method mimics stereopsis, the biological
process used by most animals to ascertain depth. However,

the method requires either accurately installing two cameras
with a precise separation distance, or the use of a specialised
stereo camera. This increases the complexity and cost of the
solution.

Sochor et al. [14] propose a method of particular interest,
it is fully automatic and requires no user input. Vehicles are
detected and tracked and the motion of the traffic in each
direction is averaged and assumed to be along a straight
line. The camera parameters can then be calculated using the
vanishing points that are found at the intersection of these
lines. The scene scale is inferred by comparing known 3D
models of frequently passing cars with the detected vehicle
on the image plane. This method is complex and out of the
scope of this project, but shows great potential, achieving a
relative error of just 1.39%.

Fung et al. [15] and He and Yung [16] propose different
methods for calibrating the camera using standard road
markings as reference features. These methods were used
to calibrate the camera for this project as they are simple,
effective and require no knowledge of the camera or its set-up.
Additionally, standard road marking specifications are widely
available and no other reference objects were required.

II. THEORY
A. YOLOv3

YOLOVS3 is a fully convolutional neural network (CNN) that
is extremely fast since it does not use region proposals, instead
it processes the entire image only once.

YOLOv3 uses a feature extractor called Darknet-53
[6], shown on the top row of Figure 1, that consists
of 53 convolutional layers, each followed by a batch
normalization layer and an activation function. Most of the
3x3 convolutional layers are preceded by a 1x1 convolution
which is used to perform reduction in the filter dimension so
that the 3x3 convolutions are less computationally expensive.

The batch normalisation layer standardises the inputs of the
activation function to have a mean close to zero and a standard
deviation close to one. This has multiple benefits, including
speeding up the training as the network should converge
more quickly. It also serves to simplify the network as other
regularisation methods such as dropout can be removed.

The activation function used is the leaky variant of
the Rectified Linear Unit (ReLU). ReLU is defined
as y(z) =max{0,z} and is commonly used as it is
computationally simple, converges quickly due to its linearity
and has distinct ‘dead’ and ‘active’ or ‘firing’ regions. The
leaky variant has a small slope of y = 0.01z for all negative
values instead of being completely ‘dead’ at zero. This allows
for a neuron to recover from being ‘dead’ and can allow for
faster learning rates without ending up with large numbers of
‘dead’ neurons.

The feature extractor also utilises residual blocks. These
provide shortcuts between convolutional layers, adding the
activation outputs. In large networks the gradient can often
degrade to zero as the accuracy saturates, making gradient
descent extremely slow. The shortcut connections between the
layers remedy this problem.

> M.ENG PROJECT, APRIL 2020 <

______ J

{Layer 36

U

—_————— e ———

Layer 61

—\

g
[

Layer 90

3x3 Convolution
Stride 2

1x1 Convolution 3x3 Convolution

! @ Residual

Upsample x2 Detection

\ 1x1 Convolution .
N ® Concatenation

Fig. 1: YOLOV3 architecture, with Darknet-53 on the top row

The feature maps are downsampled using a convolutional
layer with stride two. This is better than using pooling as it
prevents the loss of low-level features.

The features learned by the convolutional layers are then
passed to a classifier which makes the detection predictions
using 1x1 convolutions at three different scales as shown in
Figure 1. Between the classifier at each scale, the convolutional
layer is upsampled and concatenated with the feature map of
a previous layer.

At each scale the image is divided into an Sx.S grid and
the detection of an object is determined by the grid cell that
contains the centre of the object. The YOLOv3 predictions
are log-space transforms that are applied to a set of anchor
boxes, or bounding box priors, to obtain a set of bounding
box predictions per grid cell. Using anchor boxes allows the
network to predict the bounding boxes much faster. In this
case, three anchor boxes are used and therefore three bounding
boxes are predicted per grid cell. For each anchor box, C class
scores are predicted as well as five attributes that describe the
objectness score and the box centre and size. Objectness is the
likelihood of there being an object in the box. Class score is the
probability that the object belongs to a certain class. The final
bounding box is computed from the network outputs £, 1, ¢,
and t;, as follows:

by = 0(ts) + ¢ (1)
by =o(ty) + ¢y (2)
bu = pue’® (3)
by = pre'. “)

The coordinates of the centre of the final bounding box
are (bs,by) and its width and height are b,,, by, respectively.
(¢z,cy) are the coordinates of the top left corner of the grid
cell and p,,,pn are the width and height of the anchor box
respectively. The sigmoid function o restricts the output of
the centre coordinates to be between zero and one to ensure
it lies within the grid cell.

For an input image of size 416x416px, YOLOvV3 predicts
a total of 10647 bounding boxes, therefore the output must
be processed first in order to get a reasonable set of results.
Initially, the boxes are filtered based on their objectness and
confidence scores and boxes below a threshold are ignored.
Non-maximal suppression is then used to remove multiple
detections of the same object. This is implemented by selecting
the box with the highest score, then calculating its intersection
over union (IOU) and removing any overlapping boxes that fall
below the IOU threshold.

> M.ENG PROJECT, APRIL 2020 <

B. Kalman Filter

The Kalman filter [8] is a recursive algorithm used to
estimate the state of a process using a form of feedback
control. It is very useful for tracking applications where the
aim is to predict where an object will next be found. The filter
makes the assumptions that the model of the process is linear
and that the noise is white Gaussian.

The filter can be broken down into two steps; predict and
update. During the predict step the optimal prediction of the
current state and its expected variance are calculated. After
a measurement, the update step combines the values and
variances of the measurement and predicted state with a gain.
If the measurement is noisy and has high variance, the gain
is small and therefore reduces the weight of the measurement
value. If the predicted variance is large, the gain will be large
and so the measurement will be weighted heavily.

For this project, the Kalman filter uses the bounding boxes
predicted by the network as the measurements in the update
step.

C. Camera Calibration

The process of camera calibration is necessary in order to
determine the vehicle speed in real-world units. It is used to
find the parameters of the pinhole camera model that most
closely approximate the camera the image was taken with.
These parameters are represented by the camera projection
matrix

P=K[R T] (3)

where K consists of the intrinsic parameters and [R T]
corresponds to the extrinsic parameters, where R is the rotation
matrix and 7 is the translation matrix [17].

The intrinsic parameters are described by the matrix

rf s wug
K=10 f v (6)
0 0 1

where 7 is the aspect ratio, f is the focal length in pixels,
s is the skew factor and (ug,vg) are the coordinates of the
principal point [18]. The skew factor describes the amount of
shear distortion in the projected image, and the principal point
is the intersection between the image plane and the line that
passes through the pinhole of the camera. Often, the principal
point is assumed to be (0, 0), the skew factor is assumed to
be 0 and the aspect ratio is set to 1, reducing the intrinsic
parameters to the focal length.

The extrinsic parameters represent the position of the
camera in the 3D world scene [19]. This is described by the
translation and rotation of the camera from the origin. Given
the general camera model in Figure 2, the horizontal rotation
is given by the pan angle p, the vertical rotation by the tilt
angle ¢, and the rotation along the camera’s optical axis is
given by the swing angle s. The location of the camera is
given by the world coordinates (Xcan, Yoanr, Zoanm)-

Az
,,,,,,,,,,,,,,,,,,,,,,,,, B amera
O?‘\M"g\"/
P, h
=X Q Y.
World Plane o L

X
Fig. 2: General camera model (Based on [19])

Knowledge of the camera matrix allows for coordinates in
the image plane to be projected onto the 3D world scene as
shown.

Mz, y, 1]=[X, Y, Z 1]P (7)

where) is the scale factor, (z,y) are the coordinates of a
point on the image plane and (X,Y, Z) are coordinates of the
corresponding point in the world scene.

The proposed calibration method is based on the methods
presented by Fung and Yung [15] and He and Yung [16], and
uses a rectangular pattern from road markings to calculate
the camera parameters. The 3D world plane is defined with
the X-axis along the direction of the road, the Y -axis
perpendicular to the road and the Z-axis perpendicular to the
surface of the road. It is assumed that the road is straight and
flat and that all points on the road are on the Z = 0 plane
in the 3D world scene. Four points on the road surface are
selected using the road markings as a refe_rgnce to form a
rectangle ABC'D with the sides AB and C'D parallel to the
X-axis and the sides AC' and BD parallel to the Y-axis in
the world scene. The width and length of the rectangle are w
and [respectively. This rectangle is shown in Figure 3 as seen
in both the image plane and the world scene.

The method has the advantage that it can be used
to calculate all the necessary camera parameters without
requiring any prior knowledge of the camera setup. The
method presented by Fung and Yung (FY) calculates the
parameters using the width of the rectangle and the two
vanishing points which are found from the intersection of the
parallel lines. However, FY suffers from ill-conditioning at pan
angles close to 90 degrees. This is because as the pan angle
tends to 90n degrees, where n € Z, the second vanishing
point tends to infinity as one set of lines becomes parallel in
the image scene. He and Yung (HY) propose an alternative
method to calculate the parameters in these cases, using just
one vanishing point and the width and length of the rectangle.
This method cannot be used for every case as it suffers from
large error in certain cases and therefore a combination of the
methods must be used.

> M.ENG PROJECT, APRIL 2020 <

(a) Viewed in the image scene

L] L]
y A _w__C
X l
L o= = = = =
B
Direction of
Z = 0 plane traffic flow

(b) Viewed top down in the 3D world scene

Fig. 3: Example of road markings used for calibration (Based on [15])

Table I presents the three different cases and the calibration
method that is most suitable. The method used in Case 3
is the same as the standard HY method but with the labels
of the rectangle vertices temporarily rotated by 90 degrees,
effectively transforming the camera by a pan angle of 90
degrees in order to calculate the other parameters.

TABLE I: Case selection

Case Pan Angle p (degrees) Calibration Method

1 90n + 30 < p < 90n + 60 Fung & Yung (FY)

2 180n + 60 < p < 180n 4+ 120 He & Yung (HY)

3 180n — 30 < p < 180n + 30 HY Rotated (HY")

where n € Z

III. METHODS
A. Preprocessing

The dataset was provided by Q-Free and consisted of
approximately 30, 000 images of UK A-roads and motorways,
of which around 15, 000 were labeled for nine different classes
of vehicles as well as cyclists and pedestrians. The dataset also
included images from an IR camera at night, some images
during adverse weather conditions and a few poor quality
images. These images were manually removed to simplify the
dataset. A Python script was then used to discard the unlabeled
images, remove the pedestrian and cyclist classes and replace
the other classes with one singular ‘vehicle’ class. The Python
script also split the dataset into training, test and validation sets
at a ratio of 7:2:1.

Another Python script was used to create videos from
the still images in the dataset. These videos were used to
investigate the rate at which the model could perform the
detections. Q-Free also supplied a video file, however, as this

was handheld footage it was considerably shaky. The video
was stabilised as best as possible using video editing software,
as the camera calibration is only valid for a fixed viewpoint
. Despite this, only one ten second section of the video was
deemed usable.

B. Training

The darknet framework from Alexey [20] was used to
configure and train the network. The size of the network
chosen was 416 x416, which was the maximum size capable of
running on the machine used. The framework included data
augmentation tools, which were used to randomly vary the
saturation, exposure, hue, resolution and aspect ratio of the
images, therefore artificially increasing the size of the dataset.
The initial convolutional weights used were pre-trained on
Imagenet [21]. The three anchor boxes were calculated using
k-means clustering on the dataset. The labeled boxes were
grouped into three clusters, and the mean of each cluster
formed the shape of the anchor boxes. The burn-in rate
was set to 1000 and the learning rate was started at 0.001
and decreased by 0.1 at 4800 iterations and again at 5400
iterations. This was to stop the model from rapidly converging
to an incorrect solution. The hardware used for training was
an Nvidia GTX 1080 with 8GB of VRAM.

C. Calibration tools

A calibration tool was developed using Python and OpenCV
to enable the user to easily calibrate a camera [22]. It is
assumed that the camera is in a fixed position and that
distortion effects, such as barrel distortion, were negligible.
It is also assumed that the road is flat and straight, and
that the road markings used for calibration have parallel
features and conform to the government road specifications.
The user first selects the vertices of a rectangle ABCD by
clicking on an image from the camera. The rectangle should
use road markings for reference as shown in Figure 3. To
reduce the user error, the points can be inputted multiple

> M.ENG PROJECT, APRIL 2020 <

times to form an average location for each. The width of
the rectangle is specified and then the software calculates
the camera parameters using Fung and Yungs method (FY).
The dimensions of the road markings on UK roads can be
found in the Traffic Signs Manual from the Department for
Transport [23]. The pan angle is then used to check whether
the parameters should be recalculated using He and Yungs
(HY) method or HY’ with the ABCD labels rotated by 90
degrees as shown in Table I. The camera parameters are then
written to file to be used by the main program to calculate the
speeds.

D. Calculating speed

The tracking and speed calculations are implemented using
Alexey’s C++ API [20] and a modified version of his
C++ example file [22]. The tracking is performed using
the OpenCV Kalman filter. This standard implementation
of the Kalman filter did result in some erroneous behavior
as the originally detected bounding boxes would only be
used to update the filter during the update step and were
then discarded. Therefore, the location of the bounding box
as predicted by the network was lost and replaced by that
predicted by the Kalman filter which was less accurate,
hence the speed measurements were affected. To remedy this
behavior, rather than changing the API, the Kalman filter
predictions were matched to the bounding box predictions of
the network. For each network predicted box, it was compared
to every Kalman prediction and a score for each pairing was
calculated. This score is given by the intersection area over the
area of the network predicted box. For the pair with the highest
score the tracking ID from the Kalman filter was applied to
the corresponding network predicted bounding box.

Next, the average speed of each vehicle passing the view of
the camera was calculated. It is assumed that the vehicles are
moving at a constant speed. First, the camera parameters are
loaded from the file generated by the calibration tool. For each
detected vehicle, the corner of the bounding box closest to the
ground plane is selected. The corner coordinates (z4,y,) in
the image plane are then converted to a set of corresponding
coordinates (Xq,Yg) on the Z = 0 plane in the real world
scene using the following transformations

vsh sin
ushcosp + 57]?
sint
Xo = 8
@ Zqcostsins + gy, costcoss + fsint ®)
. [yshcosp
pshsinp — | ———
sint
Yo = , 9
@ Zqcostsins + gy, costcoss + fsint ©)
where
fbs = TqCOSS — YqSin s (10)
Vs = TgSins + g4 CoS s. (11D

The first time a new vehicle is detected, its tracking ID,
initial coordinates (X¢,Yy) and the current frame number
fq are recorded. Each time the same vehicle is detected, its
distance d from (X, Yy) and the elapsed number of frames
ty since f, are calculated. Using these, the average speed v
of the vehicle from when it was first detected is

d FP
v= ——=d- Gl (12)
ty - +p5 ty

where F'PS is the frames per second of the video feed.

IV. COMPLICATIONS

Due to the Covid-19 outbreak, the final set of results
could not be obtained. All of the necessary prior work
was completed, however the following results could not be
collected due to the shutdown:

o the accuracy of the model on a separate validation set;

e an average vehicle speed per lane for a longer fully

stabilised video;

o the average speed of the model in frames per second,

especially whilst not simultaneously displaying a video
output stream, as would be expected under normal

operation;

o the performance of the model across different network
sizes;

« the performance of the network across a variety of camera
angles.

Therefore, in the following results section only the
observations made on a handful of test-time outputs are
discussed.

V. RESULTS
A. Object detection

The model achieved very high accuracy for the task of
object detection with 98% mAP. However, as the datasets
are not the most representative of the true environment, the
model will need to be retrained with different data. As the
dataset used was simplified to only contain images from clear
sunny days, the model would suffer during adverse weather
conditions. The model would also not function overnight using
IR camera images, it would need to include these in the
dataset or switch to a separate model overnight. Additionally,
the dataset lacked in variety. There were not many different
camera angles. Additionally, the images did not contain many
different vehicle classes, as shown in Figure 4. This resulted in
poor accuracy for rarer vehicle types, such as motorcycles. The
dataset also did not contain labels for all of the vehicles in each
image, in particular distant vehicles were neglected. This led to
the model only detecting and rating its performance for objects
in the foreground. For the purpose of measuring the speed of
the vehicles it would be especially useful to detect them as
soon as possible. This would increase the time and distance
traveled by the detected vehicle across the frame, therefore
improving the speed averages.

> M.ENG PROJECT, APRIL 2020 <

1.8% - Other

Motorcycle
Van with trailer

Car with trailer

Caravan

Car with caravan

Bus

Fig. 4: Vehicle class distribution in the dataset

For a network size of 416x416, using a HD 1920x1080px
video as input, the model reached a peak speed of 42 FPS
while displaying the output detections as a video stream. The
majority of cameras record at 30 FPS, therefore the model
is more than fast enough for real-time detection, especially
considering that in practice the output would not be in video
format and would therefore be even faster. However, the
accuracy of the detections for the video footage was lower than
that of the image test set, as the camera angle was different
to those in the training dataset.

B. Tracking

The Kalman filter successfully tracked vehicles across the
video frame in most cases. However, periods of occlusion
caused issues as the filter would not recognise the object again.
This issue was most prevalent during periods of dense traffic.
Measures can be taken to reduce the effects of occlusion by
carefully selecting the camera position. The higher the camera
is installed, the less occlusion will occur. The camera angle
relative to the direction of the road will also have an effect.
The closer the camera is to being perpendicular to the road,
the more vehicles will obstruct those in other lanes. The closer
the camera is to being parallel to the road, the more likely that
vehicles are obstructing vehicles in the same lane. Having the
camera close to parallel would also mean that the vehicles
would rapidly reduce in size, because the vanishing point
would be closer. Therefore the size of the region where cars
are successfully detected is reduced. For these camera angles,
the Kalman filter caused some vehicle identities to jump across
the road nearer the vanishing point. However, this was easily
remedied by cropping out the other side of the road.

C. Vehicle speed

The calculated speeds were in the region of expected speeds
for the road and vehicle class, however, there were no ground
truth measurements for comparison. The speed measurements
for vehicles in the overtaking lanes were faster than for the
vehicles in the slow lane, as expected. This can be seen in
the two frames from the video output in Figure 5. Vehicle 9
is in the fast lane and traveling faster than vehicles 7 and 8.
All three vehicles are also traveling close to 70mph which is
expected for this type of road.

The camera calibration method was accurate, however,
it relied on knowing the accurate dimensions of the road
markings. Occasionally the road markings deviated from the
government road specifications and in these cases the speed
measurements were all uniformly affected due to the constant
calibration error. The camera calibration was also only valid
for short periods of time, as the video was not taken with
a tripod and therefore the camera was not in a truly fixed
position.

Using the corner of the bounding box closest to the road
surface did not result in the most accurate solution. This is
because YOLOV3 best predicts the bounding box center and
only fits the box shape using an anchor box, resulting in
loosely fitting bounding boxes. Therefore, the corner of the
box was never perfectly on the 7 = 0 plane in the world
scene. The corner of the bounding box would also remain
relatively stationary while the object was coming into view
at the edge of the frame. This would result in errors in the
average speed.

For a network size of 416x416, using a HD 1920x1080px
video as input, the model reached a peak speed of 36 FPS
whilst both displaying the output detection as a video stream
and performing the tracking and speed calculations. Using the
road markings, the length of the road visible in Figure 5 can be
estimated to be 60m. Therefore, a vehicle traveling at 70mph
will cross the video frame in just under two seconds and will
be captured by the camera in approximately 60 frames.

> M.ENG PROJECT, APRIL 2020 <

e

| .\Zhicle 7
69.64 mph
= =

Vehicle 8
68.33 mph

(a) Frame 50

B Vehicle 7 T
68.16 mph
—

" Vehicle 9
. 72.15 mph

—

Vehicle 8
64.21 mph

s

(b) Frame 77, approximately one second later

Fig. 5: Two successive captures from the video output

As the model’s speed is faster than the video’s 30 FPS, all
occurrences of the vehicle will be used. For calculating the
vehicle speed, an absolute minimum of two occurrences, or
just over 1 FPS, is necessary. However, this would not be
sufficient to track the vehicle, which is necessary to calculate
the speed. Therefore, the more occurrences the better and
currently the model is using the the maximum number of
captures as it is running faster than the camera.

For real-time application, the network would be running on
less powerful hardware. However, the model would not be
required to display the output as a video stream, which would
further increase the computational performance. Therefore, the
network shows very strong potential to perform at the speeds
required for real-time application.

VI. CONCLUSION AND FURTHER RECOMMENDATIONS

This work shows that using video images has the potential to
be a successful non-intrusive solution for calculating the speed
of traffic flow. The accuracy rates achieved for the detection
are high and most importantly the system has been shown to be
capable of running at real-time speeds. To further improve the
system, the model should be trained on a more varied dataset.
It should include images from a larger variety of camera
angles, various weather conditions and include more images
of less common vehicles, such as motorcycles. Additionally,
there should be images, or a separate model, for overnight IR
camera images. Most importantly, all visible vehicles in an
image should be labeled to allow the model to be trained for
every vehicle in view.

To improve the tracking, the Deep SORT algorithm [11]
should be used. By including the object features, occluded
objects would be tracked much more successfully.

The camera calibration method is very good in principle.
However, its accuracy relies on the road markings and this
is not reliable in practice as they do not always conform to
the government road specifications. The calibration method
presented by Sochor ef al. [14] shows promise, as it is fully

automatic, requires no user input and does not rely on any
reference markers.

To improve the accuracy of the speed measurements, 3D
bounding boxes should be used. The center of the ground
plane of the 3D bounding box would be a much more accurate
marker than the corner of the 2D bounding box that is closest
to the Z = 0 plane. Using 3D boxes would also open up the
possibility of being able to output the size of the object without
much additional effort. The accuracy of the model should also
be investigated using ground truth speed data.

Finally, the performance of the system should be tested
using hardware that is more representative of the final
application to investigate how it performs when implemented.

ACKNOWLEDGEMENT

The author would like to thank Q-Free for supporting the
project by supplying the data and providing help along the
way. Thanks is also given to Stefano Giani, whose guidance
and supervision was invaluable.

REFERENCES

[1] The tdi website: About us. [accessed: 22/10/2019]. [Online]. Available:
http://transportdatainitiative.com/about-us/

[2] Environmental protection uk: Impacts of car
pollution. [accessed: 22/10/2019]. [Online]. Available:
https://www.environmental-protection.org.uk/policy-areas/air-
quality/air-pollution-and-transport/car-pollution/

[3] R. Avery, Y. Wang, and G. Rutherford, “Length-based vehicle
classification using images from uncalibrated video cameras,” in Proc.
IEEE International Conference on Intelligent Transportation Systems
(ITSC’04), Washington, WA, USA, Oct. 2004, pp. 737-742.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, pp. 1137-1149, Jun.
2017.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’16), Las Vegas, NV,
USA, Dec. 2016, pp. 779-788.

[6] A.F. J. Redmon, “Yolov3: An incremental improvement,” University of
Washington, Tech. Rep., apr 2018.

> M.ENG PROJECT, APRIL 2020 <

[7]
[8]
[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]
[21]

[22]

(23]

B. Horn, “Determining optical flow,” Artificial Intelligence, vol. 17, pp.
185-203, Aug. 1981.

R. Kalman, “A new approach to linear filtering and prediction problems,”
ASME Journal of Basic Engineering, vol. 82, pp. 35-45, Mar. 1960.
A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and
realtime tracking,” in Proc. IEEE International Conference on Image
Processing (ICIP’16), Phoenix, AZ, USA, Aug. 2016, pp. 3464-3468.
H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, pp. 83-97, Mar. 1955.

N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in Proc. IEEE International
Conference on Image Processing (ICIP’17), Beijing, China, Sep. 2017,
pp. 3645-3649.

Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transaction on Pattern Analysis and Machine Intelligence, vol. 22, p.
1330-1334, Nov. 2000.

G. Xu, L. Chen, and F. Gao, “Study on binocular stereo camera
calibration method,” in Proc. IEEE International Conference on Image
Analysis and Signal Processing (IASP’11), Hubei, China, Oct. 2011.

J. Sochor, R. Juranek, and A. Herout, “Traffic surveillance camera
calibration by 3d model bounding box alignment for accurate vehicle
speed measurement,” Computer Vision and Image Understanding, vol.
161, pp. 87-98, Jun. 2017.

G. Fung, N. Yung, and G. K. H. Pang, “Camera calibration from road
lane markings,” Optical Engineering, vol. 42, pp. 2967-2977, Oct. 2003.
X. C. He and N. Yung, “New method for overcoming ill-conditioning in
vanishing-point-based camera calibration,” Optical Engineering, vol. 46,
Mar. 2007.

Z. Zhang, T. Tan, K. Huang, and Y. Wang, “Practical camera calibration
from moving objects for traffic scene surveillance,” IEEE Transaction
on Circuits and System for Video Technology, vol. 23, pp. 518 — 533,
Mar. 2013.

Y. Zheng and S. Peng, “A practical roadside camera calibration method
based on least squares optimization,” IEEE Transaction on Circuits and
System for Video Technology, vol. 15, pp. 831 — 843, Apr. 2014.

G. Fung, N. Yung, and G. Pang, “Camera calibration from road lane
markings,” Optical Engineering, vol. 42, pp. 2967-2977, Oct. 2003.
AlexeyAB, “Darknet,” GitHub, [accessed: 15/3/2020]. [Online].
Available: http://transportdatainitiative.com/about-us/

P. J. Reddie, “Darknet pre-trained weights,” [accessed: 15/3/2020].
[Online]. Available: https://pjreddie.com/media/files/darknet53.conv.74
F. B. Gurr, “Final year project code,” GitHub, [accessed: 25/4/2020].
[Online]. Available: https://github.com/Francis-Gurr/Vehicle-Speed-
YOLO

D. for Transport, “Chapter 5: Road markings,” Traffic Signs Manual,
2019.

